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Abstract--General solutions for axisymmetric displacements and stresses of a transversely isotropic
annular cylinder of infinite length are derived by using Fourier integral transforms. These general
solutions are used to solve boundary-value problems corresponding to radial and tangential tractions
applied over a finite segment of the surface of a cylindrical borehole in an infinite medium. Contact
problems involving a rigid cylinder with a radial misfit and a rigid cylinder subjected to an axial
load are analysed by numerically solving the governing integral equations. The accuracy of present
solutions is confirmed by comparison with the solutions reported by Parnes [(1993) Applied tractions
on the surface ofan infinite cylindrical bore. Int. J. Solids Structures 19, 165-177] for radial tractions
applied to a borehole in an isotropic medium. Selected numerical results for displacements and
stresses are presented to portray the influence of material anisotropy, type of loading and the aspect
ratio of a rigid cylinder on the elastic fields. It is found that the axial stiffness of a rigid cylinder
bonded to a borehole can be used to approximate the stiffness of a rigid cylinder in an elastic half
space. The relevance of present analysis to the solution of problems encountered in geomechanics
and mechanics of composite materials is discussed. Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

The development of analytical and computational methods for stress analysis of an aniso
tropic medium with a cylindrical borehole is useful to the modelling ofa variety of problems
encountered in geomechanics and mechanics of composite materials. For example, theor
etical modelling of borehole stress fields, in situ testing devices such as pressuremeter,
massive bore-hole plugs, fibre pull-out experiments, residual stresses due to thermal mis
match strains between a fibre and a matrix, and the interaction between broken or debonded
fibres and a matrix material involve the study ofaxisymmetric response ofan elastic medium
with a cylindrical borehole under surface tractions or the analysis of contact problems
involving a rigid or a flexible cylinder bonded to a borehole. A review of existing literature
reveals that solutions to problems related to tractions applied over a finite segment of the
surface ofa cylindrical borehole in an infinite isotropic elastic medium are available (Jordan,
1962; Parnes, 1983 a and b; Parnes, 1984; Parnes, 1986). In addition, Muki and Sternberg
(1969) considered the axial load transfer from an infinite cylindrical fibre bonded to an
infinite isotropic elastic medium. It is well known that the presence of material anisotropy
strongly influences the response of an elastic medium (Green and Zerna, 1968). Given
the fact that geomaterials and fibre-reinforced composite materials are anisotropic, it is
important that a realistic form of anisotropy be included in the analysis of boundary
value problems involving such materials. Among a variety of material anisotropy models
available, the transversely isotropic elastic material model (Lekhnitskii, 1963) can be con
sidered as a suitable model for geomaterials (Gibson, 1972) and fibre-reinforced composites
(Sendeckyj, 1974).

In view of the relevance of stress analysis of a transversely isotropic elastic medium
with a cylindrical borehole to a number of problems encountered in geomechanics and
mechanics of composite materials, the present paper examines a selected set of boundary
value problems involving such a medium. Initially a set of general solutions for dis
placements and stresses of a transversely isotropic annular cylinder of finite thickness and
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infinite length are derived by applying Fourier integral transforms with respect to the
vertical coordinate. General solutions corresponding to a solid cylinder and an infinite
medium with a cylindrical borehole are obtained as limiting cases. Boundary-value problems
corresponding to uniform radial and shear tractions applied over a finite segment of the
surface of a cylindrical borehole in an unbounded transversely isotropic medi um are solved.
Solutions for radial and tangential ring loads are also presented. Contact problems related
to a finite rigid cylinder subjected to an axial load and a cylinder with a radial misfit are
formulated in terms of a pair of singular integral equations. These integral equations are
solved numerically by replacing the singular kernels with appropriate non-singular kernels.
Selected numerical results are presented to demonstrate the influence of material anisotropy
and the type of loading on stresses and displacements due to tractions applied to a borehole
surface. Contact stresses and stiffness of a rigid cylindrical inclusion subjected to an axial
load and an inclusion with a radial mis-fit are also presented.

GOVERNING EQUATIONS AND GENERAL SOLUTIONS

Consider an unbounded transversely isotropic elastic medium with a cylindrical bore
hole of radius a. A cylindrical polar coordinate system (r, 8, z) and a Cartesian coordinate
system (x, y, z) are chosen such that the axis of elastic symmetry is parallel to the axis of
the borehole (Fig. 1). The mechanical response of a transversely isotropic elastic medium
is governed by five elastic moduli denoted by Cl ], C 12, C13, C33 and C44 which relate the
stresses and strains referred to a cylindrical polar coordinate system in the following manner
(Lekhnitskii, 1963).

(I a)

(1 b)

(Ie)

(I d)

In writing eqns (l), it is assumed that the deformation field is axially symmetric and
the shear strains ero = ezo == 0 and the shear stresses (JrO = (Joz == O. Positive definiteness of
strain energy requires that Cl\ > 0, C33 > 0, C44 > 0, C l l > Icul and (Cl l C33 - 2ei 3

+C12Cn) > 0 (Eubanks and Sternberg, 1954).
In the absence of body forces, the displacement and stress fields in a transversely

isotropic linear elastic material, subjected to a state of axisymmetric deformations about
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Fig. 1. Borehole geometry and coordinate systems.
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the axis of elastic symmetry, can be expressed in terms of two potential functions ¢ir, z),
j = 1, 2 which are solutions of (Green and Zerna, 1968)

(2)

where

(3)

and VI and V2 are the roots of the equation

(4)

The roots VI and V2 may be real or complex conjugates depending on the values of the
five material constants. Since displacements and stresses must be real, the potential functions
¢, and ¢2 are complex conjugates when VI and V2 are complex. In addition, it is necessary
to specify that Re (VI> V2) ~ O.

The displacements in the r- and the z-directions denoted by u,(r, z) and uz(r, z) respec
tively are related to the potential functions ¢i', z),j = 1,2 in the following manner.

(5a)

(5b)

where

(6)

A representation for relevant stresses in terms of ¢, and ¢2 can be obtained from eqns
(1) and (5). The potential function representation for displacements given by eqns (2)-(5)
is based on the condition that roots V, and V2 of eqn (4) are not equal. A solution to the
equal root case can be obtained through a suitable limiting procedure from the solutions
corresponding to unequal root case or an alternative potential function representation
(Chen, 1966; Wang, 1992).

It is convenient to nondimensionalize all quantities including the coordinates with
respect to the radius of a borehole which is hereafter considered as a unit length. Stresses
are nondimensionalized with respect to C44' Nondimensional quantities are adopted in the
ensuing analysis while retaining all of the foregoing notations for convenience.

In order to derive general solutions for axisymmetric torsionless deformations of an
annular cylinder, the solutions for potential functions governed by eqn (2) are expressed in
the following Fourier integral form (Sneddon, 1951).

(7)

where ;Pi', 0 denotes the Fourier transform of ¢i', z) with respect to the z-coordinate
which is defined as (Sneddon, 1951)
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I f·CXJ

(Mr, 0 = -~ (Mr, z)eiCZ dz, j = 1,2.
~-CXJ

The substitution of eqn (7) in eqn (2) results in the following solution for ;Pk, O.

(8)

(9)

where

C=I(I~, j=I,2 (10)

and AiO and BiO are arbitrary functions to be determined from the boundary and
continuity conditions. In addition, In and Kndenote the modified Bessel functions (Abra
mowitz and Segun, 1965) of the first and the second kind of the order n respectively.

In view of eqns (1), (5) and (9), the general solutions for Fourier transforms of
displacements and stresses, denoted by u;(r, 0 and aij(r, 0 respectively, can be expressed as

where

2

a,(r, 0 = L (AAJ, (V) - BjK, (V)]
j~]

2

uZ(r, 0 = - L i(wj[AJo(V) +BjKo(V)]
j~l

2

a,,(r,O = L {AAAiJ10 (V) - a(jr-] II (V)]
j= ,

2

aoo(r,O = L {AJ(Aj -a)(jIo(V)+aV- II 1 «(jr)]
j~ I

2

azz(r,O = - L AjViJ[AJo(V) +BjKo(V)]
j~ ,

2

a,z(r,O = - L iAjVi(AAJ] (V) -BjK] (V)]
j= ]

(11)

(12)

(13)

(14)

(15)

(16)

and

j = 1,2 (17)

(18)

The eqns (11)-(16) represent the general solutions for three-dimensional axisymmetric
deformations of an infinite annular elastic cylinder with finite inner and outer radii. The
four arbitrary functions AiO and BiO, j= 1,2 appearing in eqns (11)-(16) can be
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determined from the four traction and displacement boundary conditions associated with
the inner and outer surfaces of an annular cylinder. By setting HI = Hl == 0 in eqns (11)
(16), a set of general solutions applicable for stress analysis of a solid cylinder (i.e. zero
inner radius) is obtained. Some problems related to a transversely isotropic solid cylinder
has been considered by Chen (1966). The general solutions applicable for stress analysis of
an unbounded transversely isotropic elastic medium with a cylindrical borehole are obtained
by setting A I = A z == 0 in eqns (11 )-(16). Solutions for composite cylinders can be obtained
by representing the general solution of each material domain by eqns (II )-(16) and deter
mining the arbitrary functions by considering boundary conditions at the inner and outer
surfaces and continuity conditions at the material interfaces. In the remainder of this paper,
attention is focused only on problems related to an unbounded transversely isotropic elastic
medium with a cylindrical borehole although the methods of solution can be extended to
analyse problems related to homogeneous annular/solid cylinders or composite cylinders
without any fundamental difficulty.

APPLIED TRACTIONS ON BOREHOLE SURFACE

Consider a cylindrical borehole of radius a in an unbounded transversely isotropic
elastic medium. A segment of the borehole surface of nondimensionallength 2b (b = b/a)
is subjected to uniformly distributed radial and tangential tractions as shown in Fig. 2. The
general solutions ofdomain n are given by eqns (II )-(16) with A I = A l == O. The arbitrary
functions HI and Bl corresponding to radial traction of intensity fo can be determined from
the following boundary conditions.

O"rr(l,Z) = -fo[H(z+b)-H(z-b)J, -00 < z < 00

O",z(l,z) =0, -oo<z<oo

where H(. ..) denotes the Heaviside step function.
The eqns (19) and (20) can be expressed in the Fourier transform domain as

_ fi sin «(b) - -
O"rrO, 0 = - V~fo-(- = f«(b)

(19)

(20)

(21)

(22)

Substitution of eqns (13) and (16) in eqns (21) and (22) results in the following solutions
for HI and Bz.

I
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(a) Uniform radial tractions of intensity fa (b) Uniform tangential tractions of intensity fo

Fig. 2. Tractions applied over a segment of borehole surface.
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B
1
(0 = _ n(b)Y/2 (23)

[PIY/2 -P2Y/1]

and

y/j
(24)B 2(O = - -B 1

Y/2

where

Pi = )·iJ Ko(O +r:x(iKI ((i)' J = 1,2 (25)

Y/i = )'ivii(K j (0, J = 1,2. (26)

It is noted from eqns (10) and (23)-(26) that B] and B 2 are even functions of (.
Therefore, it is evident from eqns (11) and (12) that the radial and vertical displacements are
symmetric and antisymmetric respectively about the plane z = O. The following asymptotic
expressions valid for large arguments of ( can be obtained for B j and B 2 by considering the
asymptotic behaviour of Kn (Abramowitz and Segun, 1965)

(27)

(28)

The above asymptotic expressions are used in an ensuing section to improve the convergence
of the numerical quadrature scheme used for the evaluation of semi-infinite integrals for
displacements and stresses.

The arbitrary functions B] and B 2 corresponding to tangential tractions (Fig. 2b)
applied over a segment of a borehole can be determined by considering the following
boundary conditions.

(Jrr(1,z) = 0, -00 < z < 00

(Jrz(1,z) = -fo[H(z+b)-H(z-b)], -00 < z < 00.

(29)

(30)

The application of Fourier transforms to eqns (29) and (30) and the substitution of
eqns (13) and (16) results in the following solutions for B] and B2 .

(31)

(32)

where Pj and Y/iJ = 1,2) are defined by eqns (25) and (26) respectively.
It is noted from eqns (10), (31) and (32) that B I and B 2 are odd functions of (.

Therefore, it is evident from eqns (11) and (12) that the radial and vertical displacements are
antisymmetric and symmetric respectively about the plane z = O. The following asymptotic
expressions are obtained for B] and B 2 .
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2 iV~!4fo sin ((b) e"

n (Vi!4V~!4 - vr4vi!4) n(l1!2
(33)

(34)

The arbitrary coefficients B I and B2 corresponding to a radial and tangential ring load
(i.e. b ~ 0) of intensity Fa per unit arc length can be obtained from the eqns (23), (24), (31)
and (32) by setting fa sin ((b)j( as equal to Fo/2. The asymptotic expressions for B] and B2

corresponding to radial and tangential ring loads are also obtained from eqns (27), (28),
(33) and (34) by replacing the termfo sin ((b)/( by Fo/2.

It can be shown from the preceding analysis that the final solutions for displacements
and stresses due to the loadings shown in Fig. 2 can be expressed in terms of Fourier
integrals of the following type

Ix {Sin ((b) sin ((z)}
I(r, z) = F(r, () , d(.

o sin ((b) cos ((z)
(35)

An examination of F(r, 0 corresponding to displacements and stresses caused by the
loadings shown in Fig. 2 indicates that it is free from any type of singularity along the path
of integration for ( > O. Furthermore it can be shown by using eqns (27), (28), (33) and
(34) that F(r, 0 behaves asymptotically in the form of (-ne-,,(r-l), n = 1 and 2 as (~oo.
A removable singularity exists in the integrand of eqn (35) at ( = O. The application of
Tauberian theorems (Wong, 1989) to the integrals corresponding to ring loads indicates
that urea, z) due to a radial ring load and uz(a, z) due to a vertical ring load have a singularity
of the form -In Izl as z ~ O±. On the other hand, the uz(a, z) caused by a radial ring load
and urea, z) caused by a vertical ring load possess a finite discontinuity at z = O±. The above
behaviour of displacements is similar to that observed in the classical Flamant solution
(Timoshenko and Goodier, 1970) for an elastic half plane subjected to concentrated loads
at the surface. Parnes (1984) also observed a logarithmic singularity in the urea, 0) due to a
radial ring load applied to a borehole in an isotropic medium. The solutions for ring loadings
derived here are useful in the analysis of a variety of problems related to geomechanics and
composite materials. In the ensuing section some applications of the above solutions are
considered.

RIGID INCLUSION IN A BOREHOLE

In this section, contact problems involving a rigid cylinder bonded to a borehole in an
infinite transversely isotropic elastic medium are considered. The Fig. 3(a) shows an axially
loaded rigid cylinder of radius a and height h bonded to a borehole. The quantities of
interest are the vertical displacement L1z of the cylinder and stresses along the contact surface
caused by the load Po. Problems of this nature are useful in the theoretical idealization of
response of borehole plugs and anchors, fiber pull-out tests, study of load diffusion and
interface behaviour of broken/debonded fibres and the matrix material, etc. Although it is
assumed here that the cylinder is rigid, the case of a flexible cylinder under an axial load
could be analysed by coupling the solutions for a ring load derived in the preceding section
with one-dimensional governing equation for axial deformation of an elastic bar.

The Fig. 3(b) shows another type of contact problem where a rigid cylinder with a
radial misfit of L1r is placed in a borehole. Analyses of problems of this nature are useful in
the development of in situ testing devices such as a pressuremeter for measurement of
anisotropy of geological materials. It is usually assumed that the pressure exerted by a
pressuremeter is uniform and the solutions derived in the preceding section can be used in
the analysis. However, it is useful to examine the solutions corresponding to uniform radial
displacement of the borehole with that corresponding to uniform radial pressure. The
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Fig. 3. Contact problems involving a rigid cylinder and a borehole.

system shown in Fig. 3(b) is also useful in the study of interfacial stresses due to a radial
misfit between a fibre and a matrix material. Such a misfit exists in composites during high
temperature processing due to differences in magnitude of the thermal expansion coefficient
of fibres and matrix materials. High compressive residual stresses exist in a fiber-matrix
interface whenever the thermal expansion coefficient of a matrix is greater than that of a
fiber. The interfacial normal stress mobilizes the frictional resistance along a fiber-matrix
interface during loading.

The problems shown in Fig. 3 can be formulated in terms of a pair of coupled singular
integral equations. Let rlz'), j = r, z denote the traction at a point (1, Zl) on the contact
surface. Then the displacement ui(r, z), i = 1', Z at an arbitrary point in the domain n can
be expressed as

f
hi 2

'. Gi/(r, z; I, z')r/(z') dz' = ui(r, z),
-/ti2

i,j = 1', z; Iz[ :;;:; h/2 (36)

where h = h/a and the Green's function Gij(r,z; I,z') denotes the displacement in the i
direction at point (I', z) in the domain n caused by a ring load of unit intensity (per arc
length) in the j-direction applied through the point (1, z') on the contact surface. Note that
summation is implied on the indexj in eqn (36). Explicit analytical solutions for the Green's
function Gij are given in the preceding section. The displacement Ui on the contact surface
can be expressed as

uz(l, z) = Llz ,

ur(l,z) =0,

Izi :;;:; h/2

[zl :;;:; h/2

(37a)

(37b)

for the axial loading problem shown in Fig. 3a and

uAI,z) =0,

ur(l, z) = Ll"

[zl :;;:; h/2

[z[ :;;:; h/2

(38a)

(38b)

for the problem shown in Fig. 3b.
The resultant axial force Po corresponding to the system shown in Fig. 3(a) can be

expressed as
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(39)

The average radial stress qo corresponding to the system shown in Fig. 3(b) can be
expressed as

C

f
~!2

44
qo = h . rr(Z) dz.

-h/2

(40)

The coupled singular integral equation system given by eqn (36) can be solved only by
numerical techniques due to the complexity of the kernel function Gij' Noting that Gij is
integrable with respect to z', the eqn (36) is replaced by the following linear simultaneous
equation system which is obtained by discretizing the contact region Izi ::::; hl2 by N node
points and assuming that the tractions rizn) corresponding to the nth node point are
uniformly distributed over its tributary length.

N

I Gt(1, Zm; l,zn)rj(Zn) = u,(I,zm), m = 1,2, ... , N; i,j = r, Z (41)
n=1

where the influence function Gt denote the displacement in the i-direction at the mth node
point with coordinates (1, zm) due to uniform traction of unit intensity in the j-direction
applied over the tributary length of the nth node point with coordinates (1, zn). Explicit
analytical solutions for Gt are given in the preceding section and Gt is a non-singular
influence function. The eqn (41) can be solved directly for nodal contact tractions by setting
liz = 1 in eqn (37) or Ii, = I in eqn (38). Thereafter, eqns (39) and (40) can be used to
compute the axial stiffness and average radial stress respectively. A singularity exists in the
contact stress field at the two edges of the inclusion (z = - hl2 and Z = h12) in the present
class of problems (Williams, 1952; Luk and Keer, 1979). The accuracy of contact stresses
obtained from the numerical solution of eqn (41) can be improved by taking more node
points near the two edges. However, care should be taken not to define nodal points very
close to each other «0.05a) since the coefficient matrix of eqn (41) may become ill
conditioned due to the presence of a logarithmic singularity in Gt as the nodal tributary
length approaches zero. The order of singularities in the traction field can be determined
by considering a two dimensional analysis (Williams, 1952). It can be shown that the
singularities in the traction field are of the classical square-root type since the wedge angle
corresponding to the present case is equal to n.

NUMERICAL RESULTS AND DISCUSSION

Numerical scheme
The computation of elastic fields corresponding to the problems shown in Figs 2 and

3 involves the numerical evaluation of semi-infinite integrals of the form given by eqn (35).
These integrals cannot be evaluated analytically due to the complex nature of the integrands.
However, these types of integrals can be accurately computed by using a variety of numerical
quadrature schemes. In the present study, the authors use the trapezoidal rule with the
integration interval, Ii( = 0.1. The application of direct numerical quadrature to the inte
grals given by eqn (35) can be quite inefficient since the integrands decay as (-n(n = I, 2)
when ria = 1 (i.e., at the borehole surface). For ria> I, the integrand decays exponentially
in the form (-ne-c,(r-l). The accuracy and the convergence of the numerical integration
scheme can be improved by expressing eqn (35) in the following form [except for one special
case of F(C r) which requires an additional modification].
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JOC {Sin «(b) sin ({z)}
1= [F(Cr)-F*(Cr)].. d(+Io

o Sill «(b) cos «(z)

JOC {Sin «(b) sin «(z)}
10 = F*(C r) • d(

o sin «(b) cos «(z)

(42)

(43)

(44)

F*(C r) is the asymptotic form of F(C r), and C is a constant. An explicit representation
for F* is obtained by substituting eqns (27), (28), (33) and (34) and the asymptotic
expressions for modified Bessel functions (Abramowitz and Segun, 1965) in the final
solutions. Because of similar asymptotic behaviour of F and F*, the semi-infinite integral
in eqn (42) decays rapidly and can be truncated at a relatively small value of ( as the upper
limit of the integra1. The integral 10 has the following closed form solutions (Gradshteyn
and Ryzhik, 1980) for different forms of F*.

(45)

(46)

(47)

The computation of integrals of the form Jgc F(C r) sin ((b) cos ((z) d( when F(C r) is
equal to (-2e- P( requires a modification of eqn (42) since a closed form solution for the
corresponding /0 does not exist if the lower limit of the integrand is equal to zero. To
compute the relevant integrals let

I) = I F(Cr) sin «(b) cos «(z) d(+ JXJ [F«(,r)-F*(Cr)] sin «(b) cos «(z) d(+I* (48)

where

(49)

The integrand of the second integral of eqn (48) decays rapidly due to similar asymptotic
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Table I. Comparison of solutions along the borehole surface (r/a = I) due to a radial ring load (Poisson's
ratio = 0.25)

z/a
C44u,(a, z)/Fa

Present study Parnes (l983a)
C44u,(a, z)/Fo

Present study Parnes (l983a)

0.25
0.50
1.0
1.5

0.255
0.132
0.055
0.027

0.26
0.13
0.06
0.03

-0.097
-0.076
-0.051
-0.035

-0.09
-0.07
-0.05
-0.04

Table 2. Comparison of solutions along the plane z = 0 due to radial ring loading applied to borehole surface
(Poisson's ratio = 0.25)

c44u,(r,0)/Fo aU,,(r, 0)/Fo aU8(lr,O)/Fo
Parnes Parnes Parnes

ria Present study (l983a) Present study (I 983a) Present study (1983a)

1.25 0.355 0.35 -2.08 0.255 0.23
1.50 0.216 0.21 -0.832 -0.83 0.171 0.17
2.0 0.111 0.11 -0.276 -0.27 0.077 0.08
2.5 0.069 0.07 -0.130 -0.14 0.040 0.04
3.0 0.047 0.04 -0.072 -0.07 0.023 0.02

behavior of F and F*. The integral 1* defined by eqn (49) could be evaluated by the
following procedure.

(50)

(51)

where E] (...) is the exponential integral which can be evaluated by using a series expansion
(Abramowitz and Stegun, 1965).

The exponential term in F*((, r) in eqn (44) vanishes at r = 1 (i.e., at the borehole
surface). A different set of closed form expressions can be obtained from Gradshteyn and
Ryzhik (1980) for the integrals appearing in eqns (45) and (47) when f3 = O. The closed
form solution for 1* corresponding to eqn (48) when f3 = 0 can be expressed in terms of
sine and cosine integrals (Abramowitz and Stegun, 1965).

Tables 1 and 2 present comparisons of numerical solutions for displacements and
stresses with those presented by Parnes (1983a) for an isotropic medium (Poisson's
ratio = 0.25) with a cylindrical borehole subjected to a radial ring load of intensity Fo. The
agreement between present solutions and those reported by Parnes (1983a) is very good.
Results due to Parnes (1983a) are directly taken from figures in his paper and can be
measured only with two decimal accuracy. It is also found that the direct numerical
integration of Fourier integrals without using eqns (42) results in solutions that are very
close to the solutions reported in Tables 1 and 2. However in this case the value of the
upper limit of the semi-infinite integrals required for convergence of numerical solutions is
found to be very large (e.g. , > 100).

Displacements and stresses caused by applied tractions
Fig. 4a shows the nondimensional radial displacement [(c44 u,(a, O))/(foa)] due to radial

tractions of uniform intensity fo applied to the borehole surface. Solutions are presented
for b = b/a varying from 0.1 to 5.0 and for the four different types of materials whose
properties are defined in Table 3 (Payton, 1983; Wang, 1992). A nondimensional material
constant cij = CulC44 is used in Table 3. The radial displacement at the centre of a loading
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Table 3. Material constants

C 11 /C44 C 12 /C44 ('33/ C44 ('13/ C44

Isotropic 3.00 1.00 3.00 0.99
Layered soil 4.13 1.47 3.60 1.01
Beryl rock 3.90 1.40 5.10 1.80

Ice 4.21 2.03 4.53 1.62
Glass-epoxy composite 3.17 1.40 10.0 1.10

Graphite-epoxy composite 2.02 0.68 21.2 0.07

segment has a singularity of the form -In Izl when b = O. The singular behaviour is also
evident from the numerical solutions presented in Fig. 4a. At the limit, b -+ 00, the radial
traction problem is identical to the Lame problem in classical elasticity (Timoshenko and
Goodier, 1970) and the radial displacement should approach the corresponding plane strain
limit of l/(c il -eI2), which is found to be independent of Poisson's ratio v for an isotropic
material since CII = 2(l-v)/(l-2v) and CI2 = 2v/(l-2v). Since the plane strain solution
is inversely proportional to (C li - ( 12), it is noted from Table 3 that the isotropic material
has the largest nondimensional radial displacement followed by ice, beryl rock and layered
soil. Solutions presented in Fig. 4a also confirm that the above order ofmagnitude of radial
displacement is valid for other values of b as well. The plane strain solution is approached
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when b > 3.0. The influence of material anisotropy on radial displacement is noted for all
values of bexcept for b < 0.2.

Figure 4b shows the solutions for nondimensional hoop stress [O"oo(a,O)llo] caused by
uniform radial tractions (Fig. 2a). For very small values of b (e.g. b < 0.2), hoop stress is
compressive for the four different materials. The existence of a compressive hoop stress
under a radial ring load (b = 0) was observed by Parnes (1983) for isotropic materials with
Poisson's ratio greater than zero. The order of singularity of O"oo(a, z) corresponding to a
ring load is -In Izi as Izi ---+ O. The influence of material anisotropy on hoop stress is
relatively small. The nondimensional hoop stress corresponding to the plane strain case is
1.0 for all transversely isotropic materials. The hoop stress solutions for isotropic material
and beryl rock are almost identical. The hoop stresses for ice and layered soil are slightly
smaller and larger than the solutions for isotropic materials respectively for b < 3.0.

The Fig. 4c shows the solutions for nondimensional vertical displacement
[c44uz(a,0)lloa] at the centre of a loading segment due to uniform tangential traction of
intensity10 (Fig. 2b). It can be shown that for a ring load (i.e. b = 0), uz(a, z) ---+ -In Izi as
Izi ---+ 0, similar to the case of urea, z) due to a radial ring load. Note that uz(r, z) cor
responding to tangential tractions at the limit b ---+ 00 is singular. The case corresponding
to b-+ 00 represents a anti-plane problem. For example, the vertical displacement for the
anti-plane case is given by

10 fro druz(r) = - -
C44 I r

(52)

where ro is the outer radius of the medium. Since ro -+ 00 in the present case (infinite
medium), the vertical displacement corresponding to the anti-plane case is singular. For
the finite values of bconsidered in the numerical study (0.1 ~ b~ 5.0), it is found that the
isotropic material undergoes the largest vertical displacement followed by layered soil,
ice and beryl rock. The nondimensional vertical displacement is found to be inversely
proportional to C33 in Table 3. It can be intuitively suggested that C33 representing the
stiffness in the vertical direction has the most significant influence on Uz for a finite value of
b. At the anti-plane limit, Uz is infinite and independent of C33'

Figures 5 and 6 show the radial displacement, radial stress, hoop stress and vertical
stress along the plane zla = 0 caused by uniform radial tractions with b = 0.5 and 1.5,
respectively. The radial displacement corresponding to the four materials decays rapidly
with the radial distance. The decay of radial displacement is steeper for low values of band
becomes equal to the plane strain decay of l/r for b> 3.0. The influence of material
anisotropy on ur(r,O) is similar to that observed in Fig. 4a. Comparison of solutions for
nondimensional radial stress [O",,(r,O)llo] in Figs 5 and 6 indicates that 0"" decreases more
rapidly with the radial distance when compared to ur(r,O). For b = 0.5 and 1.5 the radial
stress at ria = 3.0 is less than fifteen percent of the applied stress at r = a. Numerical
solutions indicate that for b> 3.0, the variation of O",,(r, 0) with r is very close to the r- 2

type variation corresponding to the plane strain case. The material anisotropy has a
negligible influence on radial stress.

The solutions for nondimensional hoop stress [O"oo(r,O)llo] in Figs 5 and 6 show a
behaviour which is similar to the radial stress profiles although O"oo(r,O) decreases more
rapidly with the radial distance when compared to O",,(r, 0). A minor influence of anisotropy
is noted in the hoop stress solutions in the domain 1.0 ~ ria ~ 3.0 for b ~ 1.0. The hoop
stress at all interior points becomes proportional to the plane strain value of r- 2 for b > 3.0.
The vertical stress [O"zz(a,O)llo] is compressive along the plane zla = 0 and the peak values
are observed at the borehole surface (r = a). The vertical stress decays very rapidly with
the radial distance and is negligible for ria> 3.0. The magnitude of compressive vertical
stress decreases at points within the medium with increasing b. The influence of material
anisotropy is noted in the vertical stress only near the borehole surface (1 ~ r/a ~ 2) for
b> 1.0. The solution for O"zz at the plane strain limit (b ---+ (0) also become equal to zero.
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Note that uz(r,O) and (Jrz(r,O) due to radial tractions are zero since these quantities are
antisymmetric with respect to the plane z = O.

Figure 7 shows the nondimensional vertical displacement [c44 uz (r,0)/a/o] and shear
stress [(Jrz(r, 0)//0] along the plane z = 0 due to a uniform tangential traction of intensity /0
(Fig. 2b) with b = 0.5 and 1.5. It is noted that uz(r, 0) decays rapidly with the radial distance.
The vertical displacement at interior points increases with increasing b. The anti-plane
solution yields singular vertical displacements as shown previously. The influence of
material anisotropy on uz(r,O) is noted at all interior points. The shear stress O'rz(r,O)
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decreases more rapidly with the radial distance when compared to the vertical displacement.
For the anti-plane case (6 ~ 00), the variation of (Jrz with r is equal to r~ I. The influence of
material anisotropy on shear stress is negligible. It is noted that U" (J", (Joe and (Jzz due to
uniform tangential tractions are zero along the plane z/a = 0.0.

Numerical solutions for contact problems
In this section, numerical solutions corresponding to contact problems shown in Fig.

3 are presented for different length-radius ratios of the inclusion and for the five different
materials whose properties are defined in Table 3. Figure 8a shows nondimensional average
value of radial stress (qoa/c44,1r) as defined by eqn (40) for an inclusion with a radial misfit
of ,1r and 0.5 ::s;; h/a ::s;; 10.0. It is noted that very large compressive radial stresses can be
developed at the interface for small values of h/a. The magnitude of interfacial radial stress
depends significantly on the aspect ratio of an inclusion (i.e. h/a) and the degree of material
anisotropy. A plane strain condition is reached when h/a > 10. It can be shown that in the
plane strain case, qoa/c44,1r = -(CII -CI2)' Table 3 and Fig. 8a show that the largest
compressive stress under the plane strain condition is associated with layered soil followed
by beryl rock, isotropic material, glass-expoxy and graphite-epoxy. This order of magnitude
of radial stress is found to be valid for other values of h/a as well. The problem shown in
Fig. 3b was also analysed under the condition that t z in eqn (41) is zero along the contact
surface (i.e. smooth contact). The numerical solutions for qo under smooth contact con
dition differ less than five percent from that corresponding to the fully bonded case.

Figure 8b shows the maximum tensile hoop stress [(Jeexa/c44,1r] at the contact surface
for an inclusion with a radial mis-fit of ,1r. The maximum tensile hoop stress occurs at
z/a = O. An examination of the hoop stress profile along the contact surface indicates that
it is compressive and singular at the two edges (i.e. z = -h/2 and h/2). The solutions for
maximum tensile hoop stress approach the corresponding plane strain value of (C II - e12)

for h/a > 3.0. The order of magnitude of hoop stress solutions shown in Fig. 8b is similar
to that of the average radial stress shown in Fig. 8a. Since the largest tensile hoop stress
exists under the plane strain case, it can be concluded that the possibility of tensile cracking
around an inclusion is much higher if h/a > 3.0.
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Figure 8c shows the axial stiffness [PO/c44a~z] ofa rigid cylinder bonded to a borehole
surface (Fig. 3a). Solutions are presented for 0.25 < h/a < 10.0. The influence of material
anisotropy is clearly evident in these solutions especially for the two composite materials.
The order of magnitude of axial stiffness for different materials is similar to that of C33 in
Table 3. Similar behaviour was observed earlier for the vertical displacement under tan
gential tractions. The variation of axial stiffness with the aspect ratio h/a is almost linear
for h/a > 3.0. For the anti-plane problem (h/a .... 00), the axial stiffness is infinite. The
problem shown in Fig. 3a was also analysed under the condition that the traction I, is equal
to zero along the contact surface and the solutions for axial stiffness was found to be very
close to the solutions shown in Fig. 8c.

lt is useful to compare the stiffness of a rigid cylinder bonded to a borehole with that
of a partially embedded rigid cylinder in an elastic half space (Luk and Keer, 1979;
Selvadurai and Rajapakse, 1985) and investigate the applicability of the borehole model to
approximate half space problems. Table 4 presents a comparison of axial stiffness of a rigid
cylinder of radius a and height h bonded to a borehole in an infinite isotropic medium with
that of a rigid cylinder of radius a and height 2h partially embedded in an isotropic elastic
half space. The number of nodes (N) used to discretize the contact surface is also given in
Table 4. The difference between the two sets of solutions in Table 4 is less than five percent
for h/a > 0.25. This relationship between the two sets of solutions indicates, for example,
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Table 4. Comparison ofaxial stiffness of a rigid cylinderIshell of length h in a borehole
and a rigid cylinder of length 2h in an elastic half space (Poisson's ratio = 0.3)

2209

PO/C44a~:

Cylinder-borehole Cylinder-half space
hla N model model for 2hia

0.25 10 7.73 7.45*
0.50 20 9.47 8.85*
1.0 30 11.97 11.34*
2.5 40 17.92 17.71 *
5.0 50 24.22 24.lt

10.0 50 37.35 36.9t

* Luk and Keel' (1979).
t Selvadurai and Rajapakse (1985), Poisson's ratio = 0.25.

the global quantities such as pull-out forces and axial stiffness of piles and anchors can be
evaluated by using a borehole model instead of using a half space model.

The radial stress [O'rr(a, z)a/c44LlrJ and hoop stress [O'oo(a, z)ajc44LlrJ along the contact
surface of rigid cylinders (h/a = 1.0, 2.0) with a radial mis-fit are shown in Fig. 9. A
significant dependence of radial stress on the material anisotropy is noted. The radial
contact stress is symmetric about the z = 0 plane and compressive throughout the contact
surface. The radial stress at the two edges (z = -hj2 and h/2) is singular (square root type)
and it is nearly constant over the central part of the contact surface. As h/a increases, the
radial stress in the central part of an inclusion decreases and approaches the plane strain
value of - (c 11 - C12)' The hoop stress profiles shown in Fig. 9 are similar to the radial
stress profiles except that the hoop stress in the central part of an inclusion is tensile while
it is compressive and singular near the edges. The order of magnitude of tensile hoop
stresses for different materials is similar to that of compressive radial stresses. The tensile
hoop stress in a central part of an inclusion increases with h/a and approaches the plane
strain value of (CII - cd for hja > 3.0.
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borehole in an isotropic medium (Poisson's ratio = 0.25).

Figure 10 shows the nondimensional shear stress [O",z(a, z)a2 Ip 0] along the contact
surface of an axially loaded rigid cylinder bonded to a borehole in an isotropic medium.
The shear stress O",z is symmetric about the z = 0 plane and has a square-root type singularity
at the two edges. It is nearly constant over the central part of contact surface and decreases
with increasing hla. The influence of material anisotropy is found to be negligible on O",z.
Therefore the solutions are presented only for an isotropic material. The contact stress 0""

is antisymmetric about z = 0 and singular along the edges of a cylinder, and is not shown
here for brevity.

CONCLUSIONS

The Fourier transforms ofgeneral solution for axisymmetric displacements and stresses
of a transversely isotropic annular cylinder of infinite length are derived in terms ofmodified
Bessel functions. These general solutions are used to solve boundary-value problems involv
ing a borehole subjected to normal and tangential tractions, and a rigid cylinder bonded to
a borehole. An efficient numerical integration scheme based on the asymptotic behaviour
of the integrands is used to compute the Fourier integrals encountered in the present
analysis. The accuracy of present solutions is confirmed by comparison with the solutions
given by Parnes (1983a).

It is found that material anisotropy has a significant influence on displacements caused
by tractions applied to a borehole surface but a negligible influence on stresses. The order
of magnitude of nondimensional radial displacement due to uniform radial traction is
proportional to (C 11 -C12)-I. Plane strain conditions are reached when b > 3.0 and the
elastic fields depend significantly on fj when b < 3.0. Elastic fields caused by applied tractions
are negligible for ria> 4.0 if fj < 2.0. Therefore the response of a thick annular cylinder
can be approximated by that of a borehole in an infinite medium under certain conditions.
Hoop stress at the centre of a radial loading segment with fj < 0.2 is compressive for all
materials considered in the present study. Peak stresses are noted at r = a for both radial
and tangential tractions.

The average radial contact stress and maximum tensile hoop stress of a rigid cylinder
with a radial misfit depend significantly on the material anisotropy and aspect ratio. Plane
strain conditions are reached when hla > 10.0 for a rigid cylinder with a radial misfit.
The order of magnitude of average radial stress and the maximum tensile hoop stress is
proportional to (C ll -C I2). Radial and hoop stresses are singular and compressive at the
edges of a cylinder. Axial stiffness of a rigid cylinder bonded to a borehole increases with
hla. The influence of material anisotropy on axial stiffness is governed mainly by the
material constant C33 . The axial stiffness of a rigid cylinder with aspect ratio hla bonded to
a borehole is nearly equal to that of a rigid cylinder with aspect ratio 2hla partially
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embedded in an elastic half space. Therefore the borehole model can be used to compute
the axial stiffness of cylindrical piles and anchors, and pull-out forces.
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